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Abstract
CTRL-Labs has developed algorithms for determination of
hand movements and forces and real-time control from
neuromuscular signals. This technology enables users to
create their own control schemes at run-time — dynamically
mapping neuromuscular activity to continuous (real-valued)
and discrete (categorical/integer-valued) machine-input
signals. To demonstrate the potential of this approach to
enable novel interactions, we have built three example
applications. One displays an ongoing visualization of the
current posture/rotation of the hand and each finger as
determined from neuromuscular signals. The other two
showcase dynamic mapping of neuromuscular signals to
continuous and discrete input controls for a two-player
competitive target acquisition game and a single-player
space shooter game.
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Introduction
One of the primary drawbacks for many hand gesture
recognition systems is that users must be directly within the
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field of view of cameras and sensors—which ultimately
constrains the scenarios where these systems are useful [4,
9]. Some emerging alternative approaches for hand gesture
recognition are the use of surface electromyography (EMG)
and mechanomyography (MMG) since they are
non-invasive and can be worn directly on the body [7, 5].

MMG uses vibrational information generated from tendons
and muscles [5]. On the other hand, surface EMG–a
consumer-ready form of clinical electromyography [8]–uses
surface electrodes on the skin to measure electrical
potentials produced by muscles in response to motor
nerves [7]. Previous research has shown that just 10
electrodes is enough to detect four different types of grasps
and the amount of force applied with accuracy around
75% [2]. Similarly, through use of as few as 32 electrodes,
Tenore et al. [12] demonstrated that it is possible to detect
flexion and extension movements with 90% accuracy for
each finger. More dense configurations of electrodes, such
as an array of 192, can detect a much wider variety and
number of gestures with similar levels of accuracy as
well [1].

Figure 1: Multi-channel surface
EMG signals used by our
algorithms to determine hand state
and map neuromuscular signals to
discrete and continuous input.

However, while recent research has successfully applied
surface EMG to detect hand gestures [1, 2, 12], the
potential applications of such technology still remains
largely unexplored. In this demonstration, we present new
results by applying machine learning algorithms to:

1. Determine forces & joint angles of the wrist/fingers.

2. Quickly and dynamically map neuromuscular activity
to continuous (real-valued) and discrete (categorical
or integer-valued) input signals during runtime.

To showcase some of the more fundamental capabilities of

our software, we have built three demonstration applications
that 1) visualize wrist and finger angles/movements; and 2)
control games mapping neuromuscular activity to
continuous and discrete control signals, using arbitrary
movement-based or motionless control schemes that can
be trained from scratch within seconds. The non-invasive
nature and mass-market potential of surface EMG and the
dynamic input mapping features of our software make this
system suitable for many application areas including
smart-watch and mobile device interaction, prosthesis
control, and text generation and editing [6, 10, 11].

Description of the System
Commercial systems for obtaining surface EMG signals
exist [3, 8]. We acquire 16 channels of surface EMG
signals from forearm muscles that control the hand and
wrist. Data is sent wirelessly to our software back-end,
which applies various machine learning algorithms to
determine forces and joint angles of the wrist and fingers.
Additionally, the system allows the user to perform runtime
training of arbitrary real-time control mappings from their
neuromuscular activity to continuous (real-valued) and
discrete (categorical or integer-valued). We can use the
results of these dynamic mappings for a variety of
applications.

Applications and Demonstrations
To showcase the potential of our software, we highlight its
main capabilities through three demonstration applications
that illustrate how it can support fundamental interactions
that are necessary for the creation of new tools for specific
needs and applications.

Hand State: Detecting Hand Pose and Orientation
The Hand State demonstration provides users with
real-time tracking and visualization of the configuration and
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Figure 2: Hand State. The virtual hand renders in real-time the
wrist and finger movements determined from the neuromuscular
signals.

forces of the hand, including joint angles for the wrist and
each finger (see Figure 2). More specifically, as a user
moves their hand and fingers, the virtual hand and fingers
will move and rotate to match the estimated position of their
hand. A live demonstration with a user wearing non-invasive
surface EMG sensors will be shown to visitors. The
demonstrator will make a variety of hand movements while
showing visualizations of the neuromuscular signals
acquired by the sensors (Figure 1) and the system’s
predicted hand state (Figure 2).

Figure 3: Target Acquisition. Two
players compete to hit the most
targets. During game play, players
train mappings from their
neuromuscular activity to
continuous input signals that move
a cursor along the x and y axes.

Target Acquisition: Two Dimensions of Continuous Input
The Target Acquisition demonstration is a two-player
competitive game where attendees race to hit a target (see
Figure 3). During play, players train a mapping from their
neuromuscular signals to control a cursor’s velocity along
the x and y axes. The players use these control mappings
to race against each other to be the first to get their cursor
over a target. Once a target has been "hit" by one of the
cursors, the corresponding player gets a point and the
target randomly respawns to a new location on the screen.

Figure 4: Space Shooter. Players use custom neuromuscular
mappings to control a ship that can rotate, thrust, fire bullets to
destroy incoming objects, and raise a shield.

The first player to a set number of points wins.

Space Shooter: Simultaneous Continuous/Discrete Input
This demonstration allows visitors to train a control scheme
for playing a space shooter game (see Figure 4). During a
pre-game training phase, players train mappings for both
continuous input—to control rotation and thrust of the
ship—and discrete input—to fire bullets and shield the ship
from incoming objects. Notably, when compared to many
existing games of this genre (e.g., Space Invaders,
Asteroids, etc.), the typical control scheme is reduced from
two hands to one. Additionally, the continuous (real-valued)
control of thrust and rotation gives players more nuanced
control than the discrete button presses for movement in
many of these games. Players will destroy as many objects
as possible to gain points before their ship is hit.

Conclusion
CTRL-Labs software enables use of neuromuscular signals
for a variety of novel applications and interaction paradigms.
These basic demonstrations illustrate a sophisticated
system that can track individual finger position, rotation, and
force exertion, as well as dynamically map neuromuscular
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activity to discrete and continuous input signals. Through
interaction with our three demonstration applications, we
aim to give attendees a first hand experience with
neuromuscular signals as a tool for dynamic control, and
provide inspiration for using neuromuscular interfaces in
potential application areas such as mobile device
interaction, prosthesis control, and text entry.
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